
FDF: Frequency Detection-Based Filtering of
Scanning Worms

Byungseung Kim and Saewoong Bahk

School of Electrical Engineering and Computer Science, INMC
Seoul National University, Seoul, Korea
Email: fkbs, sbahkg@netlab.snu.ac.kr

Hyogon Kim

Department of Computer Science and Engineering
Korea University, Seoul, Korea

Email: hyogon@korea.ac.kr

Abstract— In this paper, we propose a simple algorithm for
detecting scanning worms with high detection rate and low false
positive rate. The novelty of our algorithm is inspecting the
frequency characteristic of scanning worms from a monitored
network. Its low complexity allows it to be used on any network-
based intrusion detection system as a real time detection module
for high-speed networks. Our algorithm need not be adjustedto
network status because its parameters depend on application
types, which are generally and widely used in any networks
such as web and P2P services. By using real traces, we evaluate
the performance of our algorithm and compare it with that of
SNORT. The results confirm that our algorithm outperforms
SNORT with respect to detection rate and false positive rate.

I. I NTRODUCTION

Recently, worm epidemics have become a grave concern by
demonstrating their formidable power to incapacitate various
internet services and exhaust network resources. For instance,
CodeRed, Blaster, Nimda, and SQL Slammer worms inflicted
huge economic and social damages, and their mutations are
still threatening the Internet environment. A distinct feature of
the worms is their self-propagation behavior that is enabled by
fast, automatized scanning for possible victims. They can even
spread globally in just a few minutes [6], [9]. Furthermore,
the technique is commonly utilized for compromising many
zombie hosts from which to launch distributed denial of
service (DDoS) attacks. Therefore, the detection of worm
propagation in a fast and efficient manner has been a critical
issue for mitigating its malignant impacts.

Most worm detection algorithms commonly look for the
port-scanning behavior in which an infected host attempts
to request far more new connections than a legitimate host
would [3], [11], [12]. Scanning worms target several specific
service ports that are known to be vulnerable to buffer-
overflow. In this process, they cause high rate of failed connec-
tions. These can be verified by gathering ICMP unreachable
messages in the monitored network [8] or analyzing highly
anomalous traffic relative to the usual traffic distribution[4],
[5], [13]. Moreover, since they use uniformly distributed IP
addresses as their target hosts in random IP scanning and
need responses to the scanning for finding vulnerable hosts,
they expose some specific packet flows between the monitored
network and the Internet. Due to these idiosyncrasies, scanning

worms can be detected [1], [2].
However, there can be complications in detecting scanning

worms. First, it is not easy to determine the threshold over
which the suspicious behavioral patterns described above are
positively identified. In fact, most detection algorithms need
to tune their parameters to fit the environment they work in,
such as the site and time-of-day characteristics for efficiency
and accuracy. Second, some internet services that show similar
behaviors with the worms are likely to cause false positives.
For instance, a P2P client often behaves like a scanning worm
when searching for P2P servers that have desired contents.
Moreover, many web pages containing a larger number of
embedded multimedia contents require many new connections.
Third, recent worms such as Blaster and Agobot prefer local
sequential scanning to global random scanning. Therefore,the
assumption that worms perform global random scanning is not
always valid.

In this paper, we propose a scanning worm detection al-
gorithm, named Frequency Detection-based Filtering (FDF).
It achieves high detection rate and low false positive rate
even when the scanning traffic from worms are mingled with
legitimate scanning-type flows such as P2P traffic. Moreover, it
can be easily implemented on the top of any existing network
based intrusion detection system (IDS) thanks to its simplicity.

The main idea of the FDF comes from the observation that
scanning worms pause for a specific and characteristic period
of time between individual scan attempts. TCP-based scanning
worms usually transmit SYN packets at the rate prescribed
by its self-propagation code. In contrast, normal TCP-based
applications send SYN packets to other hosts at rather an
indeterminate rate. This creates the different frequency charac-
teristics that can be leveraged to distinguish the one from the
other. The FDF extracts this frequency characteristics from just
SYN arrival patterns from the monitored network, irrespective
of the number of SYN packets.

II. A UTOCORRELATION AND PSD ESTIMATION

A TCP-based worm attempts to infect hosts via SYN
scanning on some accessible ports. Since the scanning logic
is programmed as a loop in its self-propagation code, the
worm periodically generates SYN packets towards victim
hosts. This is the worm frequency characteristics. For instance,

CodeRedII, forces an infected host to create 300 threads, and
each thread periodically runs a scanning process with the
inter-scan sleep period of 100 msec1 [14]. That is, a host
infected by CodeRedII scans at the rate of 10 (packets/sec)
per thread that exhibits the frequency characteristic of 10Hz.
Sleep instructions deciding the frequency characteristics are
also observed in the disassembled codes of other scanning
worms such as Blaster and Sasser [15], [16].

A. Autocorrelation and PSD in Real Traces

Assume that legitimate SYN arrivals follow the Poisson
distribution. Let Xn and Yn be the random variables that
represent the numbers of SYN arrivals from legitimate TCP
sessions and a scanning worm in the interval(tn�1; tn),
respectively, wheretn�1 = tn � T and T is the sampling
interval for counting the number of SYN arrivals. Then,P (Xn = k) =(�T)ke��Tk! for k = 0; 1; 2; ::: ;P (Yn = Aw) =(1 if n = kNw;0 if n 6= kNw;

whereAw is the number of active threads created by an
infected host, andNw is the scanning period of the worm.
The autocorrelations ofXn andYn are given byRXX(m) = (�T)2 + �TÆ(m);RY Y (m) = 1N � jmj N�m�1Xn=0 Yn+mYn= Aw2Nw Æ(m� kNw):

Letting Zn = Xn + Yn, we obtainRZZ(m) =(�T)2 + 2�TAwNw + �T � Æ(m)+ 1Xk=�1 Aw2Nw Æ(m� kNw): (1)

We applied the autocorrelation estimate to real traces.
The traces used in our experiments have been collected by
TCPDUMP at the gateway router between a university and
the Internet for 25 hours.2 A summary of our traces is given
in Table I. The ‘Outgoing’ in the table represents unidrectional
packet departures from the university to the Internet. ’03out
denotes the outgoing of our trace for the year 2003, and
’04 out denote the outgoing of our trace for the year 2004.
To check whether any known worms exist in our traces, we
applied the signatures of SNORT2.0 before experiments, and
we identified two hosts with CodeRedII in the 2003 trace
but none in the 2004 trace. In fact, there were several hosts

1Actually, all the threads are not always active due to the limited number of
sockets, limited network resources, and so on. In the inspection of our Internet
traces, just 8�10 SYN arrivals from a CodeRedII were observed every 100
msec. That is, the number of running thread was about 10.

2We picked this university from among those using the KREN (Korea
Education Network). The traces are for the years 2003 and 2004, for the
selected school.

TABLE I

A SUMMARY OF THE CAPTURED TRACES BYTCPDUMP

Trace IP Block Capturing Time Avg. BW

’03 out /19 network 11:37, July 3, 2003 Outgoing
45Mbps/20 network � 13:00, July 4, 2003

’04 out /19 network 23:15, July 28, 2004 Outgoing
45Mbps/20 network � 23:42, July 29, 2004

suspected of some type of infection in the 2004 trace. But we
could not identify the worm(s) by signature matching because
there were no successful setup of TCP connections over which
to transport exploit codes.

In the measurement of autocorrelation and PSD, each sam-
ple represents the number of SYN arrivals for a time bin of
10 msec, and one sample set consists of 10,000 samples. We
obtained 912 sample sets in the 2003 trace and880 sample
sets in the 2004 trace. Fig. 1(a) shows the example results
for the 15th set in the 2003 trace. To investigate the effect of
CodeRedII in the 2003 trace, we perform the autocorrelation
estimates before and after excluding SYN arrivals of the
two infected hosts from the trace. The results are shown in
Figs. 1(c) and (b) respectively. Clearly, the autocorrelation
provides a visible indication on the existence of scanning
worms. Fig. 1(d) shows a PSD estimate of the time series.
We notice that there are SYN arrivals from the worm with the
frequency of 10 (=1/0.1)Hz that bears out the periodicity of
10 sample lag (=0.01�10 sec) of Fig. 1(c).

In essence, the autocorrelation and PSD estimates show that
the frequency characteristic of SYN arrivals from legitimate
hosts spreads out all over the frequency band, whereas that
from an infected host does not. Thus they can help to identify
unknown or slow-scanning worms.

B. Discussion

In obtaining the specific frequency characteristics as shown
in Figs. 1(c) and (d), there are several caveats. First, a
significant fraction of SYN transmssions from an infected host
should be captured at the monitor for better detection accuracy.
This means that the measurement against outgoing SYNs is
likely to generate stronger results than against incoming SYN
arrivals. This is because usually, the incoming scanning SYN
packets from the Internet spread out over many sites.

Second, the sampling periodT for obtaining a sample set
should be less than the scanning periodTw (= Nw � T) of a
worm. According to the Nyquist sampling theorem [17], the
sampling rate should be at least1=Tw � 2 Hz. We enforce
it in the estimates of autocorrelation and PSD given the
target frequency characteristic of a worm is lower than or
equal to1=Tw Hz. Since most operating systems manage the
interrupt of a packet arrival within a few micro seconds, there
is no difficulty in setting the sampling rate higher. In our
experiments, we set the sampling periodT at 10 msec that
enables us to detect the worm frequency of up to 50 Hz.

Lastly, we have to consider the processing time of the
autocorrelation and PSD estimates for real-time detection.
Since the observable frequency is proportional to the sample
lag m and the sampling intervalT , the autocorrelation with

2 4 6 8 10
0

2

4

6

8

10

12

14

Time (sec)

N
um

be
r

of
 S

Y
N

 p
ac

ke
ts

(a) Time series

−100 −50 0 50 100
0

0.5

1

1.5

2

2.5

Sample lag

R
xx

(m
)

(b) Autocorrelation with-
out the infected hosts

−100 −50 0 50 100
0

2

4

6

8

10

12

14

Sample lag

R
zz

(m
)

(c) Autocorrelation with
the infected hosts

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Frequency(Hz)

G
z(

f)

(d) PSD estimate

Fig. 1. Time series, autocorrelation and PDS estimates of sample sets in the 2003 trace (outgoing).m lags needs to be computedm � n times wheren is the
number of samples. To obtain the PSD estimate, we need to
perform the Discrete Fourier Transform (DFT) for the obtainedm lags of the autocorrelation. Accordingly, the autocorrelation
estimate runs inO(mn) and the PSD estimate inO(m logm).
In our experiments, we setm at 100, n at 10; 000, andT at
0.01. Then, we can detect the worm having scanning frequency
of 1 (= 100 � 0:01)Hz through50 (= 1=0:01 � 1=2)Hz.
From these parameters, the autocorrelation estimate and the
PSD estimate are just computed100 � 10; 000 times and100� 10; 000+ 100 log100 times, respectively.

III. F REQUENCY DETECTION BASED FILTERING

To distinguish infected hosts from legitimate hosts, we
perform the autocorrelation estimate of SYN arrivals on in-
dividual host basis. The complexity of the autocorrelation
estimate withm lags andn samples isO(mn), but withN hosts to inspect it isO(Nmn). To cope with the high
complexity, here we propose aO(1) method for the FDF.

A. FDF Algorithm

Fig. 2 shows the pseudo code of the FDF that has the
following features:� Time slotTs - This is determined according to the auto-

correlation estimate. For example, if the autocorrelation
estimate is to detect the SYN scanning at 10Hz, we set
the time slot length to 0.1 sec.� Hash table entry - A distinctive characteristic of scanning
worms is that they scan a specific port known to be
vulnerable. That is, SYN packets from an infected host
have one source IP (SIP), many destination IPs (DIPs),
many source Ports (SPs) and a single destination Port
(DP). Therefore, we define a “flow” as SYN arrivals with
the same SIP and DP pair. The FDF creates a hash table
with the key consisting of the SIP and DP, and updates
it according to the arrival of a new DIP. An entry of the
hash table consists of a duration counternd, which counts
the number of consecutive time slots of observing a flow,
the starting time slotts for the flow, the latest updated
time slot tl, and SYN counterns indicating the number
of SYN arrivals during the current time slot.� Duration thresholdDth - If the worm scanning lasts more
thanDth, the FDF raises an alarm.

� Update marginUm - FDF keeps counting even if there is
no scanning activity for less thanUm slots. This handles
the heavily local scanning worms with minimal global
scanning component. Unless they are properly handled,
they could cause false negatives.

for each SYN packet:
if Hash(SIP,DP)

if t� tl < Um
Update table entry(SIP,DP)nd ++ ; tl = t ;

else
Initialize tableentry(SIP,DP)ts = tl = t ; nd = 1 ;

else
Initialize tableentry(SIP,DP)ts = tl = t ; nd = 1 ;

if nd > Dth
Alarm(SIP,DP)

Fig. 2. Pseudo code of FDF algorithm.

The FDF detection system has three stages: pre-detection,
detection, and defense. In the pre-detection stage, the system
determines whether the frequency characteristic of a scanning
worm appears through the autocorrelation estimate. If the
frequency characteristic is detected, the FDF locates infected
hosts in the detection stage. Finally, in the defense stage,the
information about the infected hosts is handed over to the
defense system and the infected hosts are isolated from the
network.

B. Behavior of SYN Arrivals from Legitimate Hosts

For optimal operation of the FDF system, we need to obtain
the system parameters that allow us to tell the SYN arrivals
caused by scanning worms from those by legitimate hosts.
To do so, here we investigate the properties of the SYN
arrivals from web clients and P2P clients that are the two
predominating applications today.

These days P2P traffic accounts for a considerable share of
the Internet traffic. Interestingly, hybrid P2P systems perform
SYN scanning like a worm. In such systems the P2P client

0 40 80 120 160 200 240 280 320 360 400
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
of

 In
te

ra
rr

iv
al

 T
im

e

Time (msec)

 Measured
 Estimated

(a) The measured and esti-
mated CDF of SYN interar-
rival times from a P2P

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Quntiles of estimated value

Q
un

til
es

 o
f m

ea
su

re
d

va
lu

e

(b) Q-Q plot

Fig. 3. Distribution of SYN interarrival time of P2P traffic.

sends SYN packets to the servers on the list obtained from
the P2P master server to check their liveness and round-trip
time (RTT) before searching files or refreshing the server list.
So, it may well cause false positives. With our Internet traces,
we attempted estimating the SYN interarrival time distribution
for a P2P client when it searches P2P servers. Our traces
contain many popular P2P traffic trace produced by such
applications as e-donkey, Soribada, KaZaa, V-share, and File-
Guri (some are local versions). Fig. 3(a) shows the CDF of
SYN interarrival time of a V-share client fitted against the
exponential distribution with� = 37 (packets/sec). Fig. 3(b)
is the QQ-plot which indicates that the SYN interarrival time
of V-share is approximately exponentially distributed. Other
P2P clients also exhibit similar characteristics with various
mean rates of 10 through 60 (packets/sec) during each SYN
burst.

We also observe from our traces that when a web client
issues multiple http requests for embedded objects on a web
page, it generates about 5�80 outgoing SYN packets in a
burst. This type of burst SYN arrivals can cause false positives
in the FDF system. In this paper, however, we do not address
the problem because there are many prior work on the subject
[10] and because P2P clients cause much more false positives
than web clients.

Now we investigate the burst duration and the SYN arrival
rate of P2P and web clients in a SYN burst. We represent the
burst event of a flow as SYN packets that arrive at the rate of
more than 10 (packets/sec) when it is active and it have the
idle period of less than 1 (sec) since the human interaction
causing the idle period commonly takes more than 1 (sec).
Fig. 4 shows that the SYN arrival rate in a burst is smaller
than 60 (packets/sec), and the burst most likely lasts less than
8 (sec).

C. Parameter Adjustment

According to the observation of legitimate SYN arrivals
described above, we adjust the parameters of the FDF: time
slot length, duration threshold, and update margin.

1) Time slot length:The slot length,Ts, is determined by
the autocorrelation estimate or the PSD estimate. As shown
in Fig. 1(a), the autocorrelation estimate of legitimate SYN
arrivals exhibits some fluctuation. However, we can clearly

10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

C
C

D
F

of
 S

Y
N

 a
rr

iv
al

 ra
te

 in
 a

 b
ur

st

Arrival rate (packets/sec)

 P2P session
 Web session

(a) SYN arrival rate in a burst

2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

C
C

D
F

of
 b

ur
st

 d
ur

at
io

n

Time (sec)

 P2P session
 Web session

(b) Burst duration

Fig. 4. Complementary CDF (CCDF) of SYN arrival rate in a burst and the
burst duration for P2P and Web clients.

differentiate the impulse train of a scanning worm from the
reference value of legitimate traffic. Let’s take the reference
value to be the minimum ofRZZ(m), and denote it byRminZZ .
Considering error and noise denoted by�(m), we can representH(m) as a likelihood function for decision asH(m) = RZZ(m)�RminZZRminZZ=8>>><>>>: Aw2Nw + �(m)(�T)2 + 2�TAwNw if m = m�;�(m)(�T)2 + 2�TAwNw if m 6= m�; (2)

wherem� is the sample lag at which the impulse train appears
on the autocorrelation estimate.

In this equation, we have to findm� satisfyingH(m�) > h
with small error whereh represents a fluctuation threshold.� is large enough to ignore the impact of�(m) since � is
the total arrival rate of legitimate SYN arrivals. Accordingly,H(m) for m 6= m� is kept small in comparison withH(m�).
In our experiments, the maximum value ofH(m) for m 6= m�
was about 0.2. Thus, we set a fluctuation threshold,h, at 0.3
by adding some safety margin to reduce the error possibility.
Our measured value ofh can be applied to other networks
because it does not depend on the monitored network but
the application services. Considering the variation inh, we
group all them�’s according to the range of autocorrelation
value. Intuitively, if we have a group offm�0;m�1;m�2; :::g that
have similar autocorrelation values within the variationh, we
obtain the frequency characteristic that has the period� and
satisfiesm�k 2 fmjm = �k+m�0; k = 0; 1; 2; 3; : : :g. If there
are too many groups, we can use the PSD estimate as a tool
for investigating the frequency characteristics. The FDF sets
the time slot length to the maximum among these obtained
periods,�’s. This is because SYN arrivals that have some
other short interarrival times can be continuously observed
within the maximum period.

2) Duration threshold:The duration threshold,Dth, is the
minimum period for continuous monitoring. This is needed to
differentiate SYN arrivals generated by a worm from those by
legitimate traffic. If the threshold is too low, the FDF would
brand many legitimate hosts as infected. Namely, if there are
many P2P clients that search P2P servers, the FDF would

generate many false positives. In contrast, if we set it too high,
there exists a possibility of false negatives. Therefore, we need
to find the optimal threshold. To do so, we take advantage of
the features of legitimate SYN arrivals analyzed in SectionIII-
B. Since it is likely that P2P clients cause more false positives
than web clients, we focus on P2P clients.

Since SYN arrivals from a P2P client can be approximated
by the Poisson distribution, we can obtain the probability that
the number of observed SYN arrivals from the P2P client forTs is greater thann asPa = p [k > n℄ = 1� nXk=0 e��bTs(�bTs)kk! ; (3)

where�b is the average SYN arrival rate in a burst. In our
experiments, we set�b to 60 packets/sec that gives the CCDF
probability of less than 0.01 in Fig. 4(a).

Since P2P and web clients keep generating SYN packets for
a relatively short duration as shown in Fig. 4(b), they do not
have to be monitored formax duration. In contrast, a worm
performs scanning for a somewhat long time, so it needs to be
monitored for amin duration at least. As the FDF operates in
the time slotted manner, we can denote themax duration and
themin duration by dmax anddmin in the unit of a time slot,
respectively. Accordingly, for a given target probabilityPf of
false positives, we can obtain an optimum duration thresholdDth as the following.Dth = minfdjPad � Pfg for dmin � d � dmax : (4)

In our experiments, we set themax duration and themin duration to 8 sec and to 0.5 sec, respectively, which
has thePf of 0.01 in Fig. 4(b). That is, ifTs is 0.1, dmin
is 5 (=0.5/0.1) anddmax is 80 (=8/0.1). We can reduce false
positives of the FDF by increasingdmax. However, the largerdmax is, the larger the detection time of the FDF is.

3) Update margin:Since the performance of the FDF is
affected by the network latency and the local scanning ratioof
the scanning worm, its deployment locale needs to be as close
to the monitored hosts as possible. In practice, it is likelyto be
located at the network boundary with other security systems
for efficient network management. Therefore, we need to allow
some update margin,Um, for the error that can incurred by
the latency and the local scanning. For example, if a worm
periodically performs local scanning for six slots, the FDF
needs to ignore the six slots or more (update margin) and keep
updating. In our experiments, we set the update margin at six.
This value is large enough to cover our /19 and /20 networks
because most worms perform global scanning as well as local
scanning to /16 and /8 networks. To keep the rate of false
positives below a certain threshold,dmin anddmax should be
scaled by the update margin.

IV. PERFORMANCEEVALUATION

For performance comparison, we apply the FDF to our two
traces in Table I and compare the results with those from
SNORT, a well-known IDS tool.

A. FDF against Real-life Traces

From the analysis of our traces with the parameter adjust-
ment in Section III, we obtained the FDF parameters as shown
in Table II and used them for evaluating the FDF.

TABLE II

A SUMMARY OF OBTAINED FDF PARAMETERS FOR REAL TRACES

Parameter set Ts �b dmin dmax Um Pf
’03 out 0.1 60 30 480 6 0.01
’04 out 0.6 60 5 80 6 0.01

To investigate how many scanning worms are in the traces,
we applied SNORT2.0 that executes the worm signature
detection and the sppportscan detection module. Then, we
manually compared the detected flows with those obtained by
the signature behaviors given in the online worm libraries [7].
As a result, we found two hosts infected by CodeRedII from
’03 out, six infected hosts from ’04out. To identify any false
positives, we examined the packet payload and DIPs for each
detected flow. We found several false positives that are created
by http, SMTP, and P2P. In the case of the detected SMTP flow
of ’04 out, we noticed that there are many HTML contents
like spam mails and all the DIPs correspond to legitimate
SMTP servers. In the same manner, it was easy to verify the
remaining false positives by inspecting the port numbers and
the delivered contents.

Table III summarizes the results of our experiments. Except
for the CodeRedII, most of the detected scanning flows exhib-
ited sequential scanning behavior. As they failed to establish
connections, we could not determine what kind of worms they
were. Assuming that only a worm performs SYN scanning
to infect other hosts, we inferred the type of each worm by
investigating the target port list and showed it on the second
column [7].

B. Comparison with SNORT

To compare the performance of the FDF with that of
SNORT, we applied the sppportscan module of SNORT2.0 to
’04 out trace. The sppportscan module counts new connection
requests from a host for a specific interval. If the count is
greater than the threshold, the module regards the host as a
scanner or a worm. For instance, if we set the two parameters
of the threshold and the interval to 90 and 30, which are
denoted by 90/30, the module detects the host that attempts
to make connections more than 90 times within 30 seconds.
Because there is no reference concerning the parameter set of
sppportscan, we varied the parameters from extremely low to
high and found the optimal values at which the number of false
positives is minimal without having false negatives. In our
experiments, the result of ’04out trace shows a same optimal
value for a duration of longer than 60 seconds. Considering
its detection time, we set the interval of the sppportscan tox=60 wherex is the threshold value of the number of SYN
packets observed in 60 seconds.

In Fig. 5, we represent the relation between the numbers of
false positives and detected scanning worms. In the case of the

TABLE III

A SUMMARY OF THE RESULTS OFFDF FOR REAL-LIFE TRACES

Detected Port # of Flows AvgRate(#/sec) AvgDuration(sec) Specification

’03 out 80(CodeRedII) 2 73.7 6072.4 Random Port Scanning
8404(v-share) 3 45.6 192.0 False Positive(P2P Scan)

’04 out

1025(W32.Keco) 1 35.0 11664.0 /24 Sequential Scanning(1KB payload)
3140(Optix) 5 19.7 5275.8 /24 Sequential Scanning(1KB payload)

80(http) 1 3.05 96.0 False Positive
25(SMTP) 1 2.3 144.0 Spam Mail

FDF, the number of detected scanning worms is fixed at six
even if we increase themax duration. In the case of SNORT,
both the numbers of false positives and detected scanning
worms decrease as the threshold increases. Consequently, the
sppportscan generates more false negatives with the increase
of the threshold while false positives are reduced. In essence,
the FDF is more effective in detecting scanning worms than
the sppportscan of SNORT with less false positives.

0 10 20 30 40 50 60 70
0

2

4

6

8

48

50

N
um

be
r o

f h
os

ts

max_duration (sec)

 # of detected worms
 # of false positives

(a) FDF

0 50 100 150 200 250 300 350 400 450
0

2

4

6

8

250

300

N
um

be
r o

f h
os

ts

Threshold in 60 seconds (x/60)

 # of detected worms
 # of false positives

(b) SNORT

Fig. 5. Performance comparison of false positives and detected scanning
worms in ’04 out trace.

V. D ISCUSSIONS

The FDF could be used for detecting periodic attacks other
than scanning worms. For example, since most SYN flooding
attacks are automated by scripts or worms, they expose some
frequency characteristics that can be detected by the FDF. Such
an example is the Blaster worm that is programmed to execute
the SYN flooding attack sending SYN packets to a target host
every 20 msec [16].

Except for updating and checking the hash table entry for
every SYN arrivals, the FDF do not require any other per-
packet processing. Therefore, its operational complexityisO(1) on each SYN arrival. As a result, it can be easily added
to existing IDS without loss of performance so run on a high
speed network.

Finally, one might ask what happens if an attacker programs
a worm self-propagation code to have a non-deterministic
sleep instruction? In this case, it is likely that the scanning
interval will have some probability distribution with possibly
minimum and maximum values. This still would give some
frequency characteristics, but the accuracy of detection could
get lower. We will address this issue in our future work.

VI. CONCLUSION

In this paper, we presented a simple and effective scanning
worm detection algorithm, FDF. The FDF algorithm exploits

the frequency characteristic of worm traffic, which is created
by the deterministic iteration of worm codes. Notice that the
frequency characteristic is independent of the number of SYN
packets. So, the FDF can detect slow scanning worms as well
as fast scanning worms. This contrasts with existing threshold-
based detection systems that have difficulty in detecting slow
scanning worms because a small number of SYN packets gen-
erated by them do not cause visible traffic anomaly. Moreover,
the FDF has low implementation complexity and the system
parameters are independent on the network size and time-of-
day. These features make it a promising method that can be
deployed in any IDS systems and to run on a high-speed link.

ACKNOWLEDGEMENTS

This research was supported by University IT Research
Center Project and NRL program of KISTEP

REFERENCES

[1] C. Zou, L. Gao, W. Gong, and D. Towsley,Monitoring and Early
Warning for Internet Worms, the 10th ACM CCS, 2003.

[2] G. Gu, M. Sharif, X. Qin, D. Dagon, W. Lee, and G. Riley,Worm Detec-
tion, Early Warning and Response Based on Local Victim Information,
the 20th Annual Computer Security Applications Conference.

[3] M. Williamson, Throttling Viruses: Restricting Propagation to Defeat
Malicous Mobile Code, June, 2002.

[4] J. Jung, V. Paxon, W. Berger, and H. BalakrishnanFast Portscan
Detection Using Sequential Hypothesis Testing, IEEE Security and
Privacy, 2004.

[5] C. Leckie and R. Kotagiri, A Probabilisitic Approach to Detecting
Network Scans, IEEE NOMS02.

[6] S. Staniford, V. Paxson, and N. Weaver,How to 0wn the Internet in
your Spare Time, the 11th USENIX Security Symposium, 2002.

[7] doshelp, trojanports, http://www.doshelp.com/trojanports.htm.
[8] G. Bakos and V. Berk,Early Detection of Internet Worm Activity by

Metering ICMP Destination Unreachable Activity, SPIE, 2002.
[9] Z. Chen, L. Gao, and K. Kwiat,Modeling the Spread of Active Worms,

IEEE INFOCOM, 2003.
[10] M. E. Crovella, Self-Similarity in World Wide Web Traffic: Evidence

and Possible Causes, IEEE/ACM Transactions on Networking, Vol. 5,
No.6, December 1997.

[11] M. Roesch,Snort: Lightweight intrusion detection for networks, LISA-
99, 1999.

[12] Herberlein, L.T., G. Dias, K. Levitt, B. Mukherjee,J. Wood, And D.
Wolber, A network security monitor, Symposium on Research in
Security and Privacy, 1990.

[13] S. Staniford, J. A. Hoagland, J. M. McAlerney,Practival Automated
Detection of Stealthy Portscans, Journal of Computer Security, Volume
10, Issue 1-2, 2002.

[14] CAIDA, CAIDA Analysis of Code-Red,
http://www.caida.org/analysis/security/code-red/#crii.

[15] eEye Digital Security,Sasser worm analysis,
http://www.eeye.com/html/research/advisories/AD20040501.html.

[16] eEye Digital Security,Blaster worm analysis,
http://www.eeye.com/html/research/advisories/AL20030811.html.

[17] V. Oppenheim and W. Schafer, Discrete-Time Signal Processing,
Prentice Hall.

