
Detecting Spatial Congestion in Multihop Wireless
Networks

Changhee Joo
School of EE and INMC

Seoul National University
Seoul, Korea

cjoo@netlab.snu.ac.kr

Saewoong Bahk
School of EE and INMC

Seoul National University
Seoul, Korea

sbahk@netlab.snu.ac.kr

Hyogon Kim
Department of Computer
Science and Engineering

Korea University
Seoul, Korea

hyogon@korea.ac.kr

ABSTRACT
While TCP is highly successful in the wire-line Internet,
its performance fast degrades as the number of hops in-
creases in multihop wireless networks. It is due to not only
the half-duplex nature of the wireless medium, but also the
congestion spreading phenomenon. Congestion in one wire-
less link spreads over space rather than localized to a link,
causing interference to packet transmissions on neighboring
links. Therefore, the space-shared feature of multihop wire-
less network makes congestion control different from that in
wired networks. Since TCP often errs in estimating con-
gestion level due to the wireless interference, it can overly
inflate the transmission window and blast packets into the
network, resulting in high level of congestion. We propose
a novel algorithm to detect congestion in multihop wireless
networks, which enables TCP to adjust the window size pre-
cisely. Performance evaluation through simulations confirms
the advantage of our proposal in detecting spatial congestion
in multihop wireless networks.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
Communication

General Terms
Algorithm

Keywords
Multihop wireless networks, congestion control, MAC

1. INTRODUCTION
As wireless networks become prevalent, there is an in-

creasing demand of network connectivity in infrastructure-
less environments such as emergency situation. TCP is a
natural choice as transport layer protocol because of its

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWCMC’06, July 3–6, 2006, Vancouver, British Columbia, Canada.
Copyright 2006 ACM 1-59593-306-9/06/0007 ...$5.00.

wide-spread use in the Internet. However, it has been shown
that TCP performs poorly in multihop wireless environ-
ments [6].

The important nature of wireless link is that the transmis-
sion interferes with neighboring links. In particular, conges-
tion spreads over space rather than limited to a link. Even
with a single connection, packet transmissions (for the same
connection) from neighboring nodes can interfere with one
another, resulting in congestion and performance degrada-
tion. In such a case, limiting the number of outstanding
packets is one solution. By forcing a small window limit, we
can broaden the average inter-packet gap and reduce con-
gestion.

There is considerable work on TCP over multihop wireless
networks found that too large window size degrades its per-
formance because packets interfere with each other, resulting
in drops due to hidden/exposed terminal phenomenon [6, 10,
5, 1, 9]. While it is known that TCP can achieve better per-
formance with limited window size, the optimal widow limit
for maximal performance is not widely agreed upon.

TCP Vegas [4] can achieve better throughput in wireless
environments because it adjusts window size based on mea-
sured round-trip time (RTT). Since congestion in wireless
networks manifests itself as increased RTT delay, Vegas can
make more precise decision on congestion than in wired net-
works [11]. However, it retains the fairness problem when
used along with existing TCPs [7] and fails to increase win-
dow size in longer-haul networks [6].

Investigating factors affecting the optimal window limit
in multihop wireless networks, we conclude that estimating
the optimal value is very hard because of network dynam-
ics. Instead, we make TCP adjust the window size based
on a congestion measure using Explicit Congestion Notifica-
tion (ECN) [8].

The ECN mechanism finds use in multihop wireless net-
works to tune TCP window size. A forwarding node can
mark the ECN bit when it detects congestion, and the sender
reduces transmission rate upon receiving an ACK with the
ECN bit set. Fu et al. use ECN in multihop wireless net-
work to inform network congestion that is detected from the
number of MAC retries [6].

The distributed feature1 of wireless Medium Access Con-
trol (MAC) protocol becomes an obstacle in determining
congestion. In this paper, we propose a novel algorithm de-

1We assume the standard IEEE 802.11 Distributed Coordi-
nation Function (DCF) as MAC layer protocol.

509

tecting incipient congestion from packet’s staying time2 in
the MAC layer. We introduce the notion of congestion po-
tential verifying that the staying time provides more precise
measure of congestion than the retry count.

The rest of the paper is organized as follows. We inves-
tigate the factors affecting the optimal TCP window size in
section 2. Taking the ECN mechanism as an alternative to
optimize TCP performance, we propose a novel algorithm
detecting congestion, which sets the ECN bit using staying
time in MAC in section 3. After evaluating the performance
of our proposals in section 4, we conclude our paper in sec-
tion 5.

2. OPTIMAL CONGESTION WINDOW
Since TCP performance is influenced by the window limit,

we investigate factors determining the optimal window limit,
which we define as the window limit when TCP achieves
the maximal throughput. We found two such factors in the
literature.

• Topology - Even in a chain topology, one of the sim-
plest topology, the optimal window limit varies with
the number of hops.

• ACK policy - ACK thinning affects the optimal win-
dow limit.

The number of hops in the topology affects the optimal
window limit. TCP can take advantages of spatial reuse in
the long-hop connection because enough space allows multi-
ple packets to be transmitted without interfering. Fu et al.
indicated that TCP achieves the best performance with the
window size of hop count/4 in [6].

ACK thinning is a generalized term for intentional ACK
drops such as the delayed ACK option [3]. By sending out an
ACK for a number of data packets, it reduces the bandwidth
share of ACKs allowing less collision with data packets [2].
Hence, ACK thinning can boost TCP performance by letting
more data packets in the network, increasing the optimal
window limit.

We also found other factors affecting the optimal window
limit through extensive simulations. Using NS-2 [12], we
build a simple chain topology, where neighboring nodes are
apart by 200 m and a TCP connection is established between
end nodes without background traffic. We use the standard
IEEE 802.11 DCF MAC with 2 Mbps physical rate, 250 m
transmission range, and 550 m interference range. As for
routing protocol, AODV is used. The data packet size is
fixed to 512 bytes unless otherwise specified. For ACK thin-
ning, the receiver generates two ACKs for a window worth
of packets. Two ACKs for an RTT make the network fully-
utilized and also provide minimum reliability for an ACK
drop.

Table 1 reveals that the packet size has an influence upon
the optimal window limit. The simulation with different
packet sizes was run in the 8-hop chain topology. Since the
network capacity is limited, the optimal window limit de-
creases with larger packet size but the maximal throughput
increases due to smaller packet overhead. TCP with ACK
thinning has larger window limit than normal TCP, mak-
ing more efficient use of the network, especially when the

2By ‘staying time’, we mean the time taken for a packet to be
successfully transmitted or dropped after it starts competing
for the medium.

1 2 3 4 5 60

TX range

IF range IF range

Figure 1: Transmission and interference range of a
node in chain topology.

packet size is small. It achieves 24.5% throughput increase
with 1460-byte packet, and 39.2% increase with 512-byte
packet.

Table 1: Optimal window limit and maximal
throughput with different packet sizes in the 8-hop
chain topology.

Packet size
512 bytes 1000 bytes 1460 bytes
W* T W* T W* T

TCP w/o
3 139.0 3 200.5 3 228.9

ACK Thinning
TCP with

12 193.6 8 254.6 6 285.0
ACK thinning
W* denotes the optimal window limit in packets,
T denotes the maximal throughput in Kbps.

Congestion level also causes differences in the optimal win-
dow limit. To show this, we simulate TCP and UDP in the
8-hop chain topology. First we establish a TCP connection
from node 0 (the left-most) to node 8 (the right-most), and
then a UDP flow with 250 Kbps in the reverse direction from
node 7 to node 6. The results are shown in Table 2. The op-
timal window limit decreases when the network is congested
with background traffic. Since the medium is shared with
the UDP flow, TCP takes less share of the network capacity.

Table 2: Optimal window limit and maximal
throughput with different congestion levels in the
8-hop chain topology.

Background
traffic

UDP 0 Kbps UDP 250 Kbps
W* T W* T

TCP w/o
3 139.0 2 113.1

ACK thinning
TCP with

12 193.6 6 127.6
ACK thinning
W* denotes the optimal window limit in packets,
T denotes the maximal throughput in Kbps.

In summary, we illustrated that there are at least four fac-
tors affecting the optimal window limit; ACK policy, topol-
ogy, packet size, and network congestion level. Hence, it is
very hard if not impossible to estimate the optimal window
limit through analysis. For instance, it will be infeasible
in congested network to apply the upper bound of window
limit as in [5], especially when there exist various sizes of
packets.

510

210 211 212 213 214 215 216 217 218 219 220
0

1

2

3

4

5

6
C

on
ge

st
io

n
po

te
nt

ia
l

Time (second)

Figure 2: Trace of maximum CP among nodes and
packet drops in the 8-hop chain network.

210 211 212 213 214 215 216 217 218 219 220
0

1

2

3

4

5

6

C
on

ge
st

io
n

po
te

nt
ia

l

Time (second)

(a) CP of node 2

210 211 212 213 214 215 216 217 218 219 220
0

1

2

3

4

5

6

C
on

ge
st

io
n

po
te

nt
ia

l

Time (second)

(b) CP of node 3

Figure 3: Trace of CP of individual nodes.

3. LINK-LAYER EXPLICIT CONGESTION
NOTIFICATION

In the previous section, we showed that it is extremely
difficult to analytically compute the optimal window limit.
Alternatively, however, we can adjust the window size based
on measured network congestion. For instance, TCP Ve-
gas [4] adjusts its congestion window using end-to-end RTT
measurement. Xu et al. showed, for this reason, that Vegas
performs well in multihop wireless network [10]. Unfortu-
nately, it has fairness problem when used with other TCP
variants [7].

Another approach is to use ECN. Link RED proposed
in [6] marks the ECN bit with a probability based on aver-
age number of retries in MAC. The sender reduces its trans-
mission rate on receiving an ECN-set ACK. The main issue
in this ECN mechanism, however, should be how to detect
network congestion. Thus below we propose a congestion
level detection algorithm based on packet’s staying time in
the MAC queue, instead of retries.

3.1 Congestion potential
In multihop wireless networks, congestion is not limited

to a link between two nodes. Since nodes share air medium,
transmissions interfere with one another causing congestion
to spread over space. To understand congestion in space,
we introduce a novel concept of Congestion Potential (CP).
We define CP of a node as the number of neighboring nodes
(including itself) that want to access the shared wireless
medium for packet transmission. For instance, if node 3 in
Fig. 1 has a packet for node 4 and starts contending to access
the medium, the CP of the nodes in node 3’s interference
range, i.e. nodes 1, 2, 3, 4, and 5, increases by one. The
CP decreases by one when node 3 finishes the transmission.

In the 8-hop chain topology, we measure the CP of all
nodes after each packet transmission. Fig. 2 illustrates max-
imum CP among nodes. Three solid vertical lines represent
data packet drops and dotted ones represent ACK drops.
Each Cross hairs indicates the maximum CP just after a
packet transmission or a drop. The correlation between
CP and congestion level is evident in Fig. 2. Before a drop,
the CP is driven high, indicating network congestion.

The CP of node 2 and 3 are very similar to maximum
CP as shown in Fig 3. It implies that each node has a
similar view of congestion in the network. Having the simi-
lar view of congestion is important in congestion control in
multihop wireless network. If nodes have different view of
congestion, some nodes would not be able to detect network
congestion while others do. It would result in unfairness
between transmissions on link layer.

While CP is a good measure of congestion in multihop
wireless network, it is hard for a node to share its transmis-
sion information with neighboring nodes under the standard
IEEE 802.11 DCF MAC protocol. The distributed nature
of the protocol precludes a centralized coordinator that is
responsible for calculating the CP of nodes. Hence, each
node should infer its own CP from indirect estimation.

3.2 Link-layer ECN
Staying time in the MAC queue can be made to provide

an indication of network congestion in the following way.
A node starts a timer when a packet enters its MAC, and
sets the ECN bit of the packet if the packet still waits for
successful transmission after a threshold T . We call this
ECN mechanism based on staying time in link layer, the
Link-layer ECN (LECN).

Retry count of MAC, which is used in [6], is another can-
didate. A node sets the ECN bit of the packet if the packet
collides several times or the history of retry count exceeds a
certain level.

While the retry count reflects the packet collisions, the
staying time accommodates both backoff time and collisions.
Fig. 4 illustrates the relevance of CP, retry count, and stay-
ing time of a node. We compare two shaded areas near
217.5 and 218.0 sec. It is evident that CPs near 218.0 sec
are higher than those near 217.5 sec implying higher level of
congestion. However, retry count does not correspond with
CP. Retry counts in two shared areas are similar and even
higher near 217.5 sec. In contrast, the staying time coincide
with congestion levels, for instance showing outstanding in-
crease of staying time near 218.0 sec.

We simulate TCP with and without ACK thinning and
LECN in the 8-hop chain topology. The threshold T for
LECN is set to 60 ms. We measure the maximum CP for
each case and get percentage of time for each congestion
potential. The resulting distribution is shown in Fig. 5.

511

217.0 217.2 217.4 217.6 217.8 218.0 218.2 218.4
0

1

2

3

4

5

6
C

on
ge

st
io

n
po

te
nt

ia
l

Time (second)

(a) Congestion potential

217.0 217.2 217.4 217.6 217.8 218.0 218.2 218.4
0

1

2

3

4

5

6

7

R
et

ry
 c

ou
nt

Time (second)

(b) Retry count

217.0 217.2 217.4 217.6 217.8 218.0 218.2 218.4
0

10

20

30

40

50

60

70

S
ta

yi
ng

 ti
m

e
(m

s)

Time (second)

(c) Staying time

Figure 4: Comparison between CP, retry count, and
staying time at node 2.

For TCP without ACK thinning, LECN makes dramatic
changes. CP of level 0 reduces from 33.85% to 9.90%, and
CP of level 5 also decreases from 4.51% to 2.41%. CP of
level 0 means that there is no packet in the network and
CP of level 5 signifies that the network is so heavily con-
gested that most nodes have packet to send. Hence, de-
creases of the high CPs mean increase of network utilization
and less congestion. On the other hand, CP of levels 2 and
3, which state that 2 or 3 packets are spaced in the 4-hop
range, increase from 15.16% to 25.10% and from 23.89% to
37.50% respectively.

For TCP with ACK thinning, the improvement from LECN
is less dramatic but the tendency is similar and evident in
both decrease of CP levels 0 and 5, and increase of CP levels
2 and 3. They also imply that the network is more highly
utilized and heavy congestion situation is avoided.

4. PERFORMANCE EVALUATION
We compare the performance of TCPs with and without

LECN. We simulate them in chain and lattice topology. Dis-
tance between nodes and other network settings are identi-
cal. TCPs have fixed window limit of 64. Although we
simulate the threshold T of LECN from 0 to 100 ms, we
present only the results for thresholds 40 and 60 ms because
they perform best.

We first simulate TCPs with various number of hops in the
chain. Fig. 6 presents throughput and average window limit
of TCP without ACK thinning. The maximal throughput is

(a) TCP without ACK thinning

(b) TCP with ACK thinning

Figure 5: Distribution of the maximum CP among
nodes. The threshold T of LECN is set to 60 ms.

obtained from exhaustive simulations changing the window
limit. Notice that the y-axis has logarithmic scale. When
the number of hops is less than 4, difference between TCP
with and without LECN is not significant. However, as the
number of hops increases beyond 4, TCP with LECN out-
performs TCP without LECN. Fig. 6 shows that TCP needs
to keep the window size small in order to achieve better per-
formance. LECN suppresses TCP’s window size growth and
boots the throughput close to the maximum.

As to TCP with ACK thinning, the results shown in Fig. 7
are similar to those of TCP without ACK thinning. LECN
successfully improves performance as well, and TCP with
LECN outperforms TCP without LECN, achieving a bit less
throughput than the maximal case.

In the next experiment, we compare some variant TCPs
including TCP Vegas, which monitors end-to-end delay to
adjust its window size. TCP Vegas outperforms TCP with-
out ACK thinning (with and without LECN) but achieves
less throughput than TCP with ACK thinning and LECN in
Fig. 8. Compared with TCP with ACK thinning but with-
out LECN, Vegas shows better performance only in connec-
tions with moderate number of hops between 5 and 10. TCP
with both ACK thinning and LECN exhibits the most out-
standing result. It outperforms all other TCP variants in
almost all cases and achieves twice the throughput of TCP
without ACK thinning and LECN.

Finally, we test TCP variants in the 9x9 lattice topol-
ogy, with 8 horizontal and vertical connections, respectively.

512

(a) Throughput

(b) Average window size

Figure 6: Performance of TCP without ACK thin-
ning.

LECN uses the threshold of 60 ms. The results shown in Ta-
ble 3 are aggregate throughput of all connections.

TCP with ACK thinning and LECN makes efficient use
of the network more than others. The network capacity
have increased upto 30% compared to TCP without ACK
thinning with 512 bytes packet size. ACK thinning achieves
this effect by reducing the number of ACKs. TCP without
ACK thnning and with LECN shows similar performance
with TCP Vegas. We claim that the choice between end-to-
end type congestion detection like Vegas or hop-by-hop type
one like ECN does not make significant difference in terms
of network capacity.

5. CONCLUSION
We demonstrate that the optimal window size of TCP is

dependent on ACK policy, topology, packet size, and net-
work congestion level through extensive simulations. Since
it is very hard to take account of all factors analytically, we
propose LECN to improve TCP performance based on the
ECN mechanism. LECN focuses on staying time in MAC
in order to detect incipient congestion. The introduction of
congestion potential verifies that staying time enables more
precise decision than retry count. We evaluate performance
of TCP variants including TCP Vegas. The comparison
demonstrates that TCP achieves the best performance when
equipped with both LECN and ACK thinning.

(a) Throughput

(b) Average window size

Figure 7: Performance of TCP with ACK thinning.

6. ACKNOWLEDGMENTS
This research was supported partially by the University

IT Research Center Project and the ubiquitous Autonomic
Computing and Network Project, Ministry of Information
and Communication, in Korea.

7. REFERENCES
[1] E. Altman and T. Jimenez. Novel delayed ack

techniques for improving tcp perfomance in multihop
wireless networks. In PWC, 2003.

[2] H. Balakrishnan, V. Padmanabhan, and R. Katz. The
effects of asymmetry on tcp performance. In ACM
Mobicom, 1997.

[3] R. Braden. Requirements for internet hosts -
communication layers. In RFC 1122, October 1989.

[4] L. Brakmo and L. Peterson. Tcp vegas: End to end
congestion avoidance on a global internet. IEEE
Journal on Selected Areas in Communication, 13(8),
October 1995.

[5] K. Chen, Y. Xue, S. Shah, and K. Nahrstedt.
Understanding bandwidth-delay product in mobile ad
hoc networks. In Computer Communication, 2004.

[6] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and
M. Gerla. The impact of multihop wireless channel on
tcp throughput and loss. In INFOCOM, 2003.

[7] J. Mo, R. La, V. Anantharam, and J. Walrand.

513

Table 3: Throughput in lattice topology.
Packet size 512 bytes 1000 bytes 1460 bytes

TCP w/o ACK thinning 189.2 264.5 290.8
TCP w/o ACK thinning and with LECN 223.4 295.4 301.2

TCP with ACK thinning and LECN 246.0 326.6 333.0
TCP Vegas 226.4 287.2 296.2

Throughput is in Kbps, and threshold T of LECN is set to 60 ms.

Figure 8: Throughput comparison of TCP variants.

Analysis and comparison of tcp reno and vegas. In
INFOCOM, 1999.

[8] K. Ramakrishnan, S. Floyd, and D. Black. The
addition of explicit congestion notification (ecn) to ip.
In RFC 3168, September 2001.

[9] K. Xu, S. Bae, S. Lee, and M. Gerla. Tcp behavior
across multihop wireless networks and the wired
internet. In WoWMoM, 2002.

[10] S. Xu and T. Saadawi. Performance evaluation of tcp
algorithms in multi-hop wireless packet networks. In
Wireless communications and mobile computing, 2002.

[11] S. Xu, T. Saadawi, and M. Lee. Comparison of tcp
reno and vegas in wireless mobile ad hoc networks. In
LCN, 2000.

514

